Copyright 2008-2014 Matus Chochlik. Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <cmath>
namespace oglplus {
class CubeExample : public Example
{
private:
shapes::Cube make_cube;
shapes::DrawingInstructions cube_instr;
Context gl;
LazyUniform<Mat4f> projection_matrix, camera_matrix, model_matrix;
Buffer verts, normals, texcoords;
DefaultTexture tex;
public:
CubeExample(void)
: cube_instr(make_cube.Instructions())
, cube_indices(make_cube.Indices())
, projection_matrix(prog, "ProjectionMatrix")
, camera_matrix(prog, "CameraMatrix")
, model_matrix(prog, "ModelMatrix")
{
vs.Source(
"#version 330\n"
"uniform mat4 ProjectionMatrix, CameraMatrix, ModelMatrix;"
"in vec4 Position;"
"in vec3 Normal;"
"in vec2 TexCoord;"
"out vec3 vertNormal;"
"out vec3 vertLight;"
"out vec2 vertTexCoord;"
"uniform vec3 LightPos;"
"void main(void)"
"{"
" vertNormal = mat3(ModelMatrix)*Normal;"
" gl_Position = ModelMatrix * Position;"
" vertLight = LightPos - gl_Position.xyz;"
" vertTexCoord = TexCoord * 6.0;"
" gl_Position = ProjectionMatrix * CameraMatrix * gl_Position;"
"}"
);
vs.Compile();
fs.Source(
"#version 330\n"
"uniform sampler2D TexUnit;"
"in vec3 vertNormal;"
"in vec3 vertLight;"
"in vec2 vertTexCoord;"
"out vec4 fragColor;"
"void main(void)"
"{"
" float l = dot(vertLight, vertLight);"
" float d = l != 0.0 ? dot("
" vertNormal, "
" normalize(vertLight)"
" ) / l : 0.0;"
" vec3 c = vec3(0.9, 0.8, 0.2);"
" vec4 t = texture(TexUnit, vertTexCoord);"
" float a = 1.0 - sqrt(abs(d)), e;"
" if(gl_FrontFacing)"
" {"
" e = d >= 0.0 ?"
" d * mix(0.5, 1.0, t.a):"
" (-0.9*d) * (1.0 - t.a);"
" }"
" else"
" {"
" e = d >= 0.0 ?"
" (0.6*d) * (1.0 - t.a):"
" (-0.7*d) * mix(0.5, 1.0, t.a);"
" }"
" float i = 0.1 + 9.0*e;"
" fragColor = vec4("
" t.r*c.r*i, "
" t.g*c.g*i, "
" t.b*c.b*i, "
" clamp(pow(t.a,2) + a*0.4, 0.0, 1.0)"
" );"
"}"
);
fs.Compile();
prog.AttachShader(vs);
prog.AttachShader(fs);
prog.Link();
gl.Use(prog);
gl.Bind(cube);
{
std::vector<GLfloat> data;
GLuint n_per_vertex = make_cube.Positions(data);
attr.Setup<GLfloat>(n_per_vertex);
attr.Enable();
}
{
std::vector<GLfloat> data;
GLuint n_per_vertex = make_cube.Normals(data);
attr.Setup<GLfloat>(n_per_vertex);
attr.Enable();
}
{
std::vector<GLfloat> data;
GLuint n_per_vertex = make_cube.TexCoordinates(data);
attr.Setup<GLfloat>(n_per_vertex);
attr.Enable();
}
.GenerateMipmap()
.Anisotropy(2);
Uniform<Vec3f>(prog,
"LightPos").
Set(
Vec3f(1.0f, 2.0f, 3.0f));
gl.ClearColor(0.1f, 0.1f, 0.1f, 0.0f);
gl.ClearDepth(1.0f);
gl.BlendFunc(
);
gl.FrontFace(make_cube.FaceWinding());
}
void Reshape(GLuint width, GLuint height)
{
gl.Viewport(width, height);
prog.Use();
projection_matrix.Set(
Degrees(80),
double(width)/height,
1, 100
)
);
}
{
gl.Clear().ColorBuffer().DepthBuffer();
camera_matrix.Set(
)
);
model_matrix.Set(
);
cube_instr.Draw(cube_indices);
cube_instr.Draw(cube_indices);
}
{
return time < 30.0;
}
};
void setupExample(ExampleParams& ){ }
std::unique_ptr<ExampleThread> makeExampleThread(
Example& ,
unsigned ,
const ExampleParams&
){ return std::unique_ptr<ExampleThread>(); }
std::unique_ptr<Example> makeExample(const ExampleParams& )
{
return std::unique_ptr<Example>(new CubeExample);
}
}